更新时间:2022-09-27 来源:黑马程序员 浏览量:

在Python中,当我们在处理数据时,可能会遇到数据类型不一致的问题。例如,通过爬虫采集到的数据都是整型的数据,在使用数据时希望保留两位小数点,这时就需要将数据的类型转换成浮点型。针对这种问题,既可以在创建Pandas对象时明确指定数据的类型,也可以使用astype()方法和to_numberic()函数进行转换,下面先来介绍明确指定数据的类型。
创建Pandas数据对象时,如果没有明确地指出数据的类型,则可以根据传入的数据推断出来,并且通过dtypes属性进行查看。例如,创建一个Series对象,并查看其数据的类型,具体代码如下。
In [19]: import pandas as pd
df=pd.DataFrame({'A':['5', '6', '7'], 'B':['3', '2', '1']})
df.dtypes # 查看数据的类型
Out[19]:
A object
B object
dtype:object 除此之外,还可以在创建Pandas对象时明确地指出数据的类型,即在使用构造方法创建对象时,使用dtype参数指定数据的类型,示例代码如下。
In [20]: import pandas as pd
# 创建DataFrame对象,数据的类型为int
df=pd.DataFrame({'A': ['5', '6', '7'], 'B': ['3', '2', '1']},
dtype='int')
df.dtypes
Out[20]:
A int32
B int32
dtype: object1024首播|39岁程序员逆袭记:不被年龄定义,AI浪潮里再迎春天
2025-10-241024程序员节丨10年同行,致敬用代码改变世界的你
2025-10-24【AI设计】北京143期毕业仅36天,全员拿下高薪offer!黑马AI设计连续6期100%高薪就业
2025-09-19【跨境电商运营】深圳跨境电商运营毕业22个工作日,就业率91%+,最高薪资达13500元
2025-09-19【AI运维】郑州运维1期就业班,毕业14个工作日,班级93%同学已拿到Offer, 一线均薪资 1W+
2025-09-19【AI鸿蒙开发】上海校区AI鸿蒙开发4期5期,距离毕业21天,就业率91%,平均薪资14046元
2025-09-19